SRC family kinase FYN promotes the neuroendocrine phenotype and visceral metastasis in advanced prostate cancer
نویسندگان
چکیده
FYN is a SRC family kinase (SFK) that has been shown to be up-regulated in human prostate cancer (PCa) tissues and cell lines. In this study, we observed that FYN is strongly up-regulated in human neuroendocrine PCa (NEPC) tissues and xenografts, as well as cells derived from a NEPC transgenic mouse model. In silico analysis of FYN expression in prostate cancer cell line databases revealed an association with the expression of neuroendocrine (NE) markers such as CHGA, CD44, CD56, and SYP. The loss of FYN abrogated the invasion of PC3 and ARCaPM cells in response to MET receptor ligand HGF. FYN also contributed to the metastatic potential of NEPC cells in two mouse models of visceral metastasis with two different cell lines (PC3 and TRAMPC2-RANKL). The activation of MET appeared to regulate neuroendocrine (NE) features as evidenced by increased expression of NE markers in PC3 cells with HGF. Importantly, the overexpression of FYN protein in DU145 cells was directly correlated with the increase of CHGA. Thus, our data demonstrated that the neuroendocrine differentiation that occurs in PCa cells is, at least in part, regulated by FYN kinase. Understanding the role of FYN in the regulation of NE markers will provide further support for ongoing clinical trials of SFK and MET inhibitors in castration-resistant PCa patients.
منابع مشابه
Lyn kinase activity is the predominant cellular SRC kinase activity in glioblastoma tumor cells.
Cellular Src activity modulates cell migration, proliferation, and differentiation, and recent reports suggest that individual members of the Src family may play specific roles in these processes. As we have found that Lyn, but not Fyn, activity promotes migration of glioblastoma cells in response to the cooperative signal generated by platelet-derived growth factor receptor beta and integrin a...
متن کاملActivity in Glioblastoma Tumor Cells Lyn Kinase Activity Is the Predominant Cellular Src Kinase
Cellular Src activity modulates cell migration, proliferation, and differentiation, and recent reports suggest that individual members of the Src family may play specific roles in these processes. As we have found that Lyn, but not Fyn, activity promotes migration of glioblastoma cells in response to the cooperative signal generated by platelet-derived growth factor receptor B and integrin AvB3...
متن کاملAndrogen-Targeted Therapy-Induced Epithelial Mesenchymal Plasticity and Neuroendocrine Transdifferentiation in Prostate Cancer: An Opportunity for Intervention
Androgens regulate biological pathways to promote proliferation, differentiation, and survival of benign and malignant prostate tissue. Androgen receptor (AR) targeted therapies exploit this dependence and are used in advanced prostate cancer to control disease progression. Contemporary treatment regimens involve sequential use of inhibitors of androgen synthesis or AR function. Although target...
متن کاملDifferential transformation capacity of Src family kinases during the initiation of prostate cancer.
Src family kinases (SFKs) are pleiotropic activators that are responsible for integrating signal transduction for multiple receptors that regulate cellular proliferation, invasion, and metastasis in a variety of human cancers. Independent groups have identified increased expression of individual SFK members during prostate cancer progression, raising the question of whether SFKs display functio...
متن کاملMelatonin Induced Schwann Cell Proliferation and Dedifferentiation Through NF-ĸB, FAKDependent but Src-Independent Pathways
Background: Peripheral nerve injury (PNI) is a common condition that compromises motor and sensory functions. Peripheral nerves are known to have regenerative capability and the pineal hormone, melatonin, is known to aid nerve regeneration. However, the role of Schwann cells and the pathways involved remain unclear. Thus, the aim of this study is to identify the effects of melatonin on Schwann ...
متن کامل